UNPAIRED ELECTRON DISTRIBUTION IN ACYLAMINYLS

Alexander R. Forrester, Hajime Irikawa and Gabriella Soutar Chemistry Department, University of Aberdeen, Old Aberdeen AB9 2UE, Scotland

Unpaired electron distribution in acylaminyls and acylalkoxyaminyls has been investigated by e.s.r. measurements of ¹⁷O labelled radicals. Delocalisation of free spin onto carbonyl oxygen has been established for the former and onto carbonyl and etherial oxygens for the latter.

Existing evidence indicates that in their ground state amidyls (1a - 1b) have a π -electronic structure.¹ However, in some cases at least the extent of delocalisation is reduced by "twisting" of the N-C(0) bond rendering the RC(0) and RN groups in different planes. The extent of twisting depends mainly on the bulk of R'.¹ In no case has it been possible to

quantify the extent of delocalisation onto the carbonyl oxygen, irrespective of the degree of twist. In this respect both the a_N and $a_H^{NCH_3}$ values appear to be poor indicators of ρ_N^{π} . Thus, the radicals (2) and (3) have remarkably similar a_N and $a_H^{NCH_3}$ values despite obvious differences in their electronic structures.^{1,2}

We have now attempted to quantify the relative importance of structures (la) and (lb) by labelling the carbonyl oxygen with ¹⁷0 and measuring the resulting a_{17_0} value. The high spin (5/2) of ¹⁷0 limited us to examine amidyls which give spectra sufficiently intense to allow detection of ¹⁷0 satellite lines. In this report we describe results for the amidyl (4) in which the degree of twist about the N-C(0) bond is considered¹ to be relatively high due to steric repulsion between 0 and Bu^t (relatively large g- and $a_{13_c}^{\gamma-C}$ values measured) From the e.s.r. spectrum measured at -90°C $a_{17_0} = 5.3G$ was evaluated. Above -60°C signals became too weak to measure accurately the ¹⁷0 satellite lines but there was little change in a_{17_0} (5.3 \rightarrow 5.15G) over this narrow range. The value ρ_C^{π} of the carbonyl carbon is almost certainly small and is likely to be less than the value 0.04 calculated for amidyl (3) (based on $a_{\rm H}^{\rm COCH_3} = 1.3G$ and $Q_{\beta} = 29.3G$) since (4) is more "twisted" than (3). Hence, using equation (i)^{3,4}

$$\mathbf{a}_{0} = (\mathbf{S}^{0} + \mathbf{Q}_{0C}^{0})\boldsymbol{\rho}_{0}^{\pi} + \mathbf{Q}_{C0}^{0}\boldsymbol{\rho}_{C}^{\pi}$$
(1)

and $(S^{0} + Q_{0C}^{0}) = -44.5G$, $Q_{C0}^{0} = -14.3G$, the spin density on oxygen is 0.13.

Interestingly, using $Q_{CO}^{C} = -25.1G$ and $Q_{NC}^{C} = -20.5G$ the spin polarisation contributions to $a_{13_{C}}^{CO}$ from adjacent N and O are -9.4 and -3.0G, respectively. The sum of these-12.4G is slightly larger than the value 11.0G measured for N-alkyl formamidyls⁵ [e.g.HC(O)NCH₂Bu^t] which is reasonable because "twisting" in (4) should lead to higher values of $a_{13_{C}}^{CO}$.

Values of ρ_0^{π} (0.13), ρ_C^{π} (0.04) and hence ρ_N^{π} <u>ca.</u>0.9 agree remarkably well with those derived by STO 3G calculation⁶ for a π -allyl state of HCONH (ρ_0 = 0.152, ρ_C^{CO} = 0.009, ρ_N = 0.839). Comparison with the cyclohexanonyl radical^{3,7} which has 0_{170} = 9.3G and ρ_0^{π} = 0.21 indicates that delocalisation onto oxygen in the amidyl (4) is significantly less than it is in (5) which is thought to have about 30% allylic character.

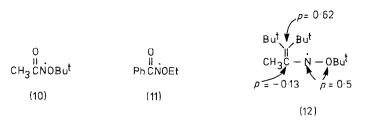
A further useful comparison of (4) can be made with the amidinyl[®] (6) which has $a_N = 8.6G$ (2N) and $a_H^{CH_3} = 2.4G$ [cf., (4) which has $a_H^{CH_3} = 2.5G$]. Spin density on the iminocarbon of (6) like that on the carbonyl-carbon of (4) will be small and negative making ρ_N^{π} on each of the nitrogens <u>ca</u>. 0.5. Hence, on this basis ρ_N^{π} for the structurally similar amidyl (4) may be estimated from its a_N value (15.8G) as 0.92 which is in good agreement with the previously derived value.

Alkoxyamidy1s

Comparison of the a_N and a_H values of the aminyls^{2,9} (2) and (7) indicates that the introduction of an oxygen adjacent to nitrogen reduces the π spin density on nitrogen as in (7a+7b). The extent to which this occurs is more difficult to ascertain. Assuming that

 ρ_N^{π} = 1 for the aminyl (2) and equation (ii) (Q_{NCH₃} = 27.4) then for the alkoxyaminyl (7) $a_{\mu}^{\text{NCH}_3} = Q_{\text{NCH}_3} \rho_{\text{N}}^{\pi}$ (**ii**)

 $\rho_N^{\pi} = \underline{ca}$. 0.8 and hence $\rho_0^{\pi} = \underline{ca}$. 0.2. An alternative approach with such radicals is to measure a_{17} from which ρ_0^{π} may be calculated. To date a_{17} values have been measured for only a short series of t-butylalkoxyaminyls¹⁰ (8). For these (8; R=t-alkyl) $a_{17} = 11.4G$


and ρ_0^{π} has been calculated as 0.28 using the simplified equation (iii) and Q_0 = 41G.

However, if Aurich's¹¹ Q₀ values of 35.3G is used ρ_0^{π} = 0.32 and if Silver's¹² full equation and parameters are used then ρ_0^{π} becomes 0.43. It is also the case that a surprisingly large variation in a_{17} values have been measured for the alkoxynitroxides¹³ (9; R=Bu^t and Pr¹) 1.03 and 4.6G, respectively. This difference has been attributed to differences in conformation arising from the bulk of R in (9) which affects overlap of the half-filled orbital on nitrogen with a lone pair orbital on oxygen. Hence, we conclude that (a) ρ_0^{π} may well vary substantially in alkoxyamidyls depending on the size of the alkyl substituents; (b) the most accurate means of conversion of a_{17} values into ρ_0^{π} densities has still to be established.

(**i**ii)

It was with this knowledge that we labelled (¹⁷0) the precursors of the alkoxyamidyls (10) and (11) with a view to comparing ρ_N^{π} and ρ_0^{π} spin densities in amidyls, alkoxyaminyls The observed values of 4.25G and 4.0G for the amidyls (10) and (11), and alkoxyamidyls. correspond to ho_0^π carbonyl of 0.1 and 0.095, respectively. Both values are slightly less than that of the corresponding amidyl (4) and the absence of a splitting due to the acetyl protons again indicates negligible spin density on carbonyl carbon.

 $a_{170} = Q_0 \rho_0^{\pi}$

Labelling of the etherial oxygen was achieved as shown in the Scheme.¹⁵ The incorporation of the label was low (5) in this case and full analysis required a lengthy accumulation The measured a_{170}^{OR} value of 3.95G corresponds to ρ_0^{π} = 0.095. Comparison with experiment. the related t-butoxyaminyls¹⁴ (12), and (8) ($\rho_0 = 0.3$, $\rho_N = 0.7$) shows significant differences in unpaired electron distribution in these three radicals. However, examination of molecular

$$Bu^{t}OH + H_{2}^{17}O \xrightarrow{HCl/50^{\circ}/2days} Bu^{t17}OH \xrightarrow{(a) Et OCN_{3}/6h/80^{\circ}} (b) 6 days/95^{\circ}$$

$$EtOCNH17OBut = \frac{(a) NaOH/80^{\circ}/6 days}{(b) HCI/(g)} But17ONH2$$

Scheme

models indicates that non-bonding interactions between alkyl groups is much greater in (8) than in (12) and almost negligible in (10). Hence, conformational preferences about the N-O bonds in (8), (10), and (12) are likely to be very different and the observed spin densities on N and O reflect these.

(10)

References

- R. Sutcliffe, D. Griller, J. Lessard and K.U. Ingold, J. Am. Chem. Soc., 1981, 103, 624.
- 2
- W.C. Danen and T.T. Kensler, J. Am. Chem. Soc., 1970, 90, 5235. D.M. Cameron, H.F. Walter, J.E. Jordan and D.W. Pratt, J. Am. Chem. Soc., 1973, 95, 7978.
- Quoted in P.B. Ayscough, "Electron Spin Resonance in Chemistry, Butler and Tanner, London, 1963, Chapt. 8.
- R. Sutcliffe, K.J. Ingold and J. Lessard, J. Am. Chem. Soc., 1981, 103, 7685. N.C. Baird and H.B. Kathpal, J. Am. Chem. Soc., 1976, 98, 7532.
- 7 D.M. Cameron, H.F. Walter and D.W. Pratt, J. Am. Chem. Soc., 1973, 95, 4057.
- 8 W. Ahrens and A. Berndt, Tetrahedron Letters, 1974, 3741.
- W.C. Danen and C.T. West, J. Am. Chem. Soc., 1971, 93, 5582.
- ¹⁰ H. Woymar and K.U. Ingold, J. Am. Chem. Soc., 1980, 102, 3813.
- ¹¹ H.G. Aurich, K. Hahn, K. Stork, and W. Weiss, Tetrahedron, 1977, 33, 969.
- ¹² H. Hayat and B.L. Silver, J. Phys. Chem., 1973, 77, 72.
 ¹³ C. Chatgillaloglu, J.A. Howard and K.U. Ingold, J. Org. Chem., 1982, 47, 4361.
- ¹⁴ W. Ahrens, K. Wieser, and A. Berndt, Tetrahedron Letters, 1983, 3141.
- ¹⁵ J.C. Stowell and J.R. Christenson, Annalen, 1980, 791.

(Received in UK 3 August 1984)